Spark_setup_all
- Spark_setup_all Download For Windows 7
- Spark Free Download
- Spark_setup_all-1
- Spark_setup_all 2020
- Spark_setup_all(1)
Download SparkSetupall.exe at Simpledownload.net. This file SparkSetupall.exe is hosted at free file sharing service 4shared. If you are the copyright owner for this file, please Report Abuse to 4shared. Spark Browser free download. Get the latest version now. Sparkbrowser is the latest web browser. Baidu provides their software as a Windows Executable file and therefore installation is as easy as downloading the file SparkSetupall.exe and running it directly after retrieving it. We highly suggest using antivirus software before running.any. files from the Internet. The company hosting this file has a trust rating of 8/10.
7/10 (529 votes) - Download Baidu Spark Browser Free. Baidu Spark Browser is an innovating web browser that stands out for its social nature. With Baidu Spark Browser you can directly download videos and MP3s. Browsing practices change and the user's needs also change with them. That's why it's. SparkSetupall.exe main category: Internet. Developer: Baidu, Inc. Top alternatives FREE Firefox Google Chrome Internet Explorer 7 Internet Explorer 8 Opera; top.
No review
No VideoPlease select a download mirror:BytesIn US MirrorBytesIn EU MirrorExternal Mirror 1The web at your fingertips Spark Browser is a modern and innovative web browser with advanced capabilities added to improve the browsing experience. It is a product of a Chinese tech web giant Baidu and it is based on Chromium. It...full software details
If you encounter any problems in accessing the download mirrors for Baidu Browser (formerly Spark Browser), please check your firewall settings or close your download manager.
Baidu Browser (formerly Spark Browser) is offered as a free download
Faster PC? Get Advanced SystemCare and optimize your PC.
- Spark Properties
- Available Properties
Spark provides three locations to configure the system:
Spark_setup_all Download For Windows 7
- Spark properties control most application parameters and can be set by usinga SparkConf object, or through Javasystem properties.
- Environment variables can be used to set per-machine settings, such asthe IP address, through the
conf/spark-env.sh
script on each node. - Logging can be configured through
log4j.properties
.
Spark properties control most application settings and are configured separately for eachapplication. These properties can be set directly on aSparkConf passed to yourSparkContext
. SparkConf
allows you to configure some of the common properties(e.g. master URL and application name), as well as arbitrary key-value pairs through theset()
method. For example, we could initialize an application as follows:
Dynamically Loading Spark Properties
In some cases, you may want to avoid hard-coding certain configurations in a SparkConf
. Forinstance, if you’d like to run the same application with different masters or differentamounts of memory. Spark allows you to simply create an empty conf:
Then, you can supply configuration values at runtime:
The Spark shell and spark-submit
tool support two ways to load configurations dynamically. The first are command line options,such as --master
, as shown above. Running ./bin/spark-submit --help
will show the entire listof options.
bin/spark-submit
will also read configuration options from conf/spark-defaults.conf
, in whicheach line consists of a key and a value separated by whitespace. For example:
Any values specified as flags or in the properties file will be passed on to the applicationand merged with those specified through SparkConf. Properties set directly on the SparkConftake highest precedence, then flags passed to spark-submit
or spark-shell
, then optionsin the spark-defaults.conf
file.
Viewing Spark Properties
The application web UI at http://<driver>:4040
lists Spark properties in the “Environment” tab.This is a useful place to check to make sure that your properties have been set correctly. Notethat only values explicitly specified through either spark-defaults.conf
or SparkConf willappear. For all other configuration properties, you can assume the default value is used.
Available Properties
Most of the properties that control internal settings have reasonable default values. Someof the most common options to set are:
Application Properties
Property Name | Default | Meaning |
---|---|---|
spark.app.name | (none) | The name of your application. This will appear in the UI and in log data. |
spark.master | (none) | The cluster manager to connect to. See the list of allowed master URL's. |
spark.executor.memory | 512m | Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. 512m , 2g ). |
spark.serializer | org.apache.spark.serializer. JavaSerializer | Class to use for serializing objects that will be sent over the network or need to be cached in serialized form. The default of Java serialization works with any Serializable Java object but is quite slow, so we recommend using org.apache.spark.serializer.KryoSerializer and configuring Kryo serialization when speed is necessary. Can be any subclass of org.apache.spark.Serializer . |
spark.kryo.registrator | (none) | If you use Kryo serialization, set this class to register your custom classes with Kryo. It should be set to a class that extends KryoRegistrator . See the tuning guide for more details. |
spark.local.dir | /tmp | Directory to use for 'scratch' space in Spark, including map output files and RDDs that get stored on disk. This should be on a fast, local disk in your system. It can also be a comma-separated list of multiple directories on different disks. NOTE: In Spark 1.0 and later this will be overriden by SPARK_LOCAL_DIRS (Standalone, Mesos) or LOCAL_DIRS (YARN) environment variables set by the cluster manager. |
spark.logConf | false | Logs the effective SparkConf as INFO when a SparkContext is started. |
Apart from these, the following properties are also available, and may be useful in some situations:
Runtime Environment
Property Name | Default | Meaning |
---|---|---|
spark.executor.memory | 512m | Amount of memory to use per executor process, in the same format as JVM memory strings (e.g. 512m , 2g ). |
spark.executor.extraJavaOptions | (none) | A string of extra JVM options to pass to executors. For instance, GC settings or other logging. Note that it is illegal to set Spark properties or heap size settings with this option. Spark properties should be set using a SparkConf object or the spark-defaults.conf file used with the spark-submit script. Heap size settings can be set with spark.executor.memory. |
spark.executor.extraClassPath | (none) | Extra classpath entries to append to the classpath of executors. This exists primarily for backwards-compatibility with older versions of Spark. Users typically should not need to set this option. |
spark.executor.extraLibraryPath | (none) | Set a special library path to use when launching executor JVM's. |
spark.files.userClassPathFirst | false | (Experimental) Whether to give user-added jars precedence over Spark's own jars when loading classes in Executors. This feature can be used to mitigate conflicts between Spark's dependencies and user dependencies. It is currently an experimental feature. |
Shuffle Behavior
Property Name | Default | Meaning |
---|---|---|
spark.shuffle.consolidateFiles | false | If set to 'true', consolidates intermediate files created during a shuffle. Creating fewer files can improve filesystem performance for shuffles with large numbers of reduce tasks. It is recommended to set this to 'true' when using ext4 or xfs filesystems. On ext3, this option might degrade performance on machines with many (>8) cores due to filesystem limitations. |
spark.shuffle.spill | true | If set to 'true', limits the amount of memory used during reduces by spilling data out to disk. This spilling threshold is specified by spark.shuffle.memoryFraction . |
spark.shuffle.spill.compress | true | Whether to compress data spilled during shuffles. Compression will use spark.io.compression.codec . |
spark.shuffle.memoryFraction | 0.3 | Fraction of Java heap to use for aggregation and cogroups during shuffles, if spark.shuffle.spill is true. At any given time, the collective size of all in-memory maps used for shuffles is bounded by this limit, beyond which the contents will begin to spill to disk. If spills are often, consider increasing this value at the expense of spark.storage.memoryFraction . |
spark.shuffle.compress | true | Whether to compress map output files. Generally a good idea. Compression will use spark.io.compression.codec . |
spark.shuffle.file.buffer.kb | 100 | Size of the in-memory buffer for each shuffle file output stream, in kilobytes. These buffers reduce the number of disk seeks and system calls made in creating intermediate shuffle files. |
spark.reducer.maxMbInFlight | 48 | Maximum size (in megabytes) of map outputs to fetch simultaneously from each reduce task. Since each output requires us to create a buffer to receive it, this represents a fixed memory overhead per reduce task, so keep it small unless you have a large amount of memory. |
Spark UI
Property Name | Default | Meaning |
---|---|---|
spark.ui.port | 4040 | Port for your application's dashboard, which shows memory and workload data |
spark.ui.retainedStages | 1000 | How many stages the Spark UI remembers before garbage collecting. |
spark.ui.killEnabled | true | Allows stages and corresponding jobs to be killed from the web ui. |
spark.eventLog.enabled | false | Whether to log Spark events, useful for reconstructing the Web UI after the application has finished. |
spark.eventLog.compress | false | Whether to compress logged events, if spark.eventLog.enabled is true. |
spark.eventLog.dir | file:///tmp/spark-events | Base directory in which Spark events are logged, if spark.eventLog.enabled is true. Within this base directory, Spark creates a sub-directory for each application, and logs the events specific to the application in this directory. Users may want to set this to a unified location like an HDFS directory so history files can be read by the history server. |
Compression and Serialization
Property Name | Default | Meaning |
---|---|---|
spark.broadcast.compress | true | Whether to compress broadcast variables before sending them. Generally a good idea. |
spark.rdd.compress | false | Whether to compress serialized RDD partitions (e.g. for StorageLevel.MEMORY_ONLY_SER ). Can save substantial space at the cost of some extra CPU time. |
spark.io.compression.codec | org.apache.spark.io. LZFCompressionCodec | The codec used to compress internal data such as RDD partitions and shuffle outputs. By default, Spark provides two codecs: org.apache.spark.io.LZFCompressionCodec and org.apache.spark.io.SnappyCompressionCodec . Of these two choices, Snappy offers faster compression and decompression, while LZF offers a better compression ratio. |
spark.io.compression.snappy.block.size | 32768 | Block size (in bytes) used in Snappy compression, in the case when Snappy compression codec is used. |
spark.closure.serializer | org.apache.spark.serializer. JavaSerializer | Serializer class to use for closures. Currently only the Java serializer is supported. |
spark.serializer.objectStreamReset | 10000 | When serializing using org.apache.spark.serializer.JavaSerializer, the serializer caches objects to prevent writing redundant data, however that stops garbage collection of those objects. By calling 'reset' you flush that info from the serializer, and allow old objects to be collected. To turn off this periodic reset set it to a value <= 0. By default it will reset the serializer every 10,000 objects. |
spark.kryo.referenceTracking | true | Whether to track references to the same object when serializing data with Kryo, which is necessary if your object graphs have loops and useful for efficiency if they contain multiple copies of the same object. Can be disabled to improve performance if you know this is not the case. |
spark.kryoserializer.buffer.mb | 2 | Maximum object size to allow within Kryo (the library needs to create a buffer at least as large as the largest single object you'll serialize). Increase this if you get a 'buffer limit exceeded' exception inside Kryo. Note that there will be one buffer per core on each worker. |
Execution Behavior
Spark Free Download
Property Name | Default | Meaning |
---|---|---|
spark.default.parallelism |
| Default number of tasks to use across the cluster for distributed shuffle operations (groupByKey , reduceByKey , etc) when not set by user. |
spark.broadcast.factory | org.apache.spark.broadcast. HttpBroadcastFactory | Which broadcast implementation to use. |
spark.broadcast.blockSize | 4096 | Size of each piece of a block in kilobytes for TorrentBroadcastFactory . Too large a value decreases parallelism during broadcast (makes it slower); however, if it is too small, BlockManager might take a performance hit. |
spark.files.overwrite | false | Whether to overwrite files added through SparkContext.addFile() when the target file exists and its contents do not match those of the source. |
spark.files.fetchTimeout | false | Communication timeout to use when fetching files added through SparkContext.addFile() from the driver. |
spark.storage.memoryFraction | 0.6 | Fraction of Java heap to use for Spark's memory cache. This should not be larger than the 'old' generation of objects in the JVM, which by default is given 0.6 of the heap, but you can increase it if you configure your own old generation size. |
spark.tachyonStore.baseDir | System.getProperty('java.io.tmpdir') | Directories of the Tachyon File System that store RDDs. The Tachyon file system's URL is set by spark.tachyonStore.url . It can also be a comma-separated list of multiple directories on Tachyon file system. |
spark.storage.memoryMapThreshold | 8192 | Size of a block, in bytes, above which Spark memory maps when reading a block from disk. This prevents Spark from memory mapping very small blocks. In general, memory mapping has high overhead for blocks close to or below the page size of the operating system. |
spark.tachyonStore.url | tachyon://localhost:19998 | The URL of the underlying Tachyon file system in the TachyonStore. |
spark.cleaner.ttl | (infinite) | Duration (seconds) of how long Spark will remember any metadata (stages generated, tasks generated, etc.). Periodic cleanups will ensure that metadata older than this duration will be forgotten. This is useful for running Spark for many hours / days (for example, running 24/7 in case of Spark Streaming applications). Note that any RDD that persists in memory for more than this duration will be cleared as well. |
spark.hadoop.validateOutputSpecs | true | If set to true, validates the output specification (e.g. checking if the output directory already exists) used in saveAsHadoopFile and other variants. This can be disabled to silence exceptions due to pre-existing output directories. We recommend that users do not disable this except if trying to achieve compatibility with previous versions of Spark. Simply use Hadoop's FileSystem API to delete output directories by hand. |
Networking
Property Name | Default | Meaning |
---|---|---|
spark.driver.host | (local hostname) | Hostname or IP address for the driver to listen on. |
spark.driver.port | (random) | Port for the driver to listen on. |
spark.akka.frameSize | 10 | Maximum message size to allow in 'control plane' communication (for serialized tasks and task results), in MB. Increase this if your tasks need to send back large results to the driver (e.g. using collect() on a large dataset). |
spark.akka.threads | 4 | Number of actor threads to use for communication. Can be useful to increase on large clusters when the driver has a lot of CPU cores. |
spark.akka.timeout | 100 | Communication timeout between Spark nodes, in seconds. |
spark.akka.heartbeat.pauses | 600 | This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in combination of `spark.akka.heartbeat.interval` and `spark.akka.failure-detector.threshold` if you need to. |
spark.akka.failure-detector.threshold | 300.0 | This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). This maps to akka's `akka.remote.transport-failure-detector.threshold`. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.heartbeat.interval` if you need to. |
spark.akka.heartbeat.interval | 1000 | This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). A larger interval value in seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for akka's failure detector. Tune this in combination of `spark.akka.heartbeat.pauses` and `spark.akka.failure-detector.threshold` if you need to. Only positive use case for using failure detector can be, a sensistive failure detector can help evict rogue executors really quick. However this is usually not the case as gc pauses and network lags are expected in a real Spark cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes leading to flooding the network with those. |
Scheduling
Property Name | Default | Meaning |
---|---|---|
spark.task.cpus | 1 | Number of cores to allocate for each task. |
spark.task.maxFailures | 4 | Number of individual task failures before giving up on the job. Should be greater than or equal to 1. Number of allowed retries = this value - 1. |
spark.scheduler.mode | FIFO | The scheduling mode between jobs submitted to the same SparkContext. Can be set to FAIR to use fair sharing instead of queueing jobs one after another. Useful for multi-user services. |
spark.cores.max | (not set) | When running on a standalone deploy cluster or a Mesos cluster in 'coarse-grained' sharing mode, the maximum amount of CPU cores to request for the application from across the cluster (not from each machine). If not set, the default will be spark.deploy.defaultCores on Spark's standalone cluster manager, or infinite (all available cores) on Mesos. |
spark.mesos.coarse | false | If set to 'true', runs over Mesos clusters in 'coarse-grained' sharing mode, where Spark acquires one long-lived Mesos task on each machine instead of one Mesos task per Spark task. This gives lower-latency scheduling for short queries, but leaves resources in use for the whole duration of the Spark job. |
spark.speculation | false | If set to 'true', performs speculative execution of tasks. This means if one or more tasks are running slowly in a stage, they will be re-launched. |
spark.speculation.interval | 100 | How often Spark will check for tasks to speculate, in milliseconds. |
spark.speculation.quantile | 0.75 | Percentage of tasks which must be complete before speculation is enabled for a particular stage. |
spark.speculation.multiplier | 1.5 | How many times slower a task is than the median to be considered for speculation. |
spark.locality.wait | 3000 | Number of milliseconds to wait to launch a For example: -Dspark.ui.filters=com.test.filter1 -Dspark.com.test.filter1.params='param1=foo,param2=testing' |
spark.ui.acls.enable | false | Whether Spark web ui acls should are enabled. If enabled, this checks to see if the user has access permissions to view the web ui. See spark.ui.view.acls for more details. Also note this requires the user to be known, if the user comes across as null no checks are done. Filters can be used to authenticate and set the user. |
spark.ui.view.acls | Empty | Comma separated list of users that have view access to the Spark web ui. By default only the user that started the Spark job has view access. |
Spark Streaming
Property Name | Default | Meaning |
---|---|---|
spark.streaming.blockInterval | 200 | Interval (milliseconds) at which data received by Spark Streaming receivers is coalesced into blocks of data before storing them in Spark. |
spark.streaming.receiver.maxRate | infinite | Maximum rate (per second) at which each receiver will push data into blocks. Effectively, each stream will consume at most this number of records per second. Setting this configuration to 0 or a negative number will put no limit on the rate. |
spark.streaming.unpersist | true | Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from Spark's memory. The raw input data received by Spark Streaming is also automatically cleared. Setting this to false will allow the raw data and persisted RDDs to be accessible outside the streaming application as they will not be cleared automatically. But it comes at the cost of higher memory usage in Spark. |
Cluster Managers
Spark_setup_all-1
Each cluster manager in Spark has additional configuration options. Configurations can be found on the pages for each mode:
Certain Spark settings can be configured through environment variables, which are read from theconf/spark-env.sh
script in the directory where Spark is installed (or conf/spark-env.cmd
onWindows). In Standalone and Mesos modes, this file can give machine specific information such ashostnames. It is also sourced when running local Spark applications or submission scripts.
Note that conf/spark-env.sh
does not exist by default when Spark is installed. However, you cancopy conf/spark-env.sh.template
to create it. Make sure you make the copy executable.
The following variables can be set in spark-env.sh
:
Environment Variable | Meaning |
---|---|
JAVA_HOME | Location where Java is installed (if it's not on your default `PATH`). |
PYSPARK_PYTHON | Python binary executable to use for PySpark. |
SPARK_LOCAL_IP | IP address of the machine to bind to. |
SPARK_PUBLIC_DNS | Hostname your Spark program will advertise to other machines. |
In addition to the above, there are also options for setting up the Sparkstandalone cluster scripts, such as number of coresto use on each machine and maximum memory.
Spark_setup_all 2020
Since spark-env.sh
is a shell script, some of these can be set programmatically – for example, you mightcompute SPARK_LOCAL_IP
by looking up the IP of a specific network interface.
Spark_setup_all(1)
Spark uses log4j for logging. You can configure it by adding alog4j.properties
file in the conf
directory. One way to start is to copy the existinglog4j.properties.template
located there.